This is BCE#19.

I recommend you print out this page and bring it to class. <u>Click here</u> to show a set of five BCE19 student responses randomly selected from all of the student responses thus far in a new window.

John , here are your responses to the BCE and the Expert's response.

1. H₂S(aq) is a diprotic acid. Given a 0.100 M H₂S solution, complete the ICE table below. NOTE: For the reaction the equation is for the first dissociation.

Reaction	H ₂ S ₹	H+	+ HS ⁻	
Initial	0.100 M	0 M	0 M	7
	0.100 M	~0 M	0 M	
Change	-x M	+x M	+x M	\$94°6
	- X	+ x	+ x	
Equilibrium	0.100 - x M	0+x M	0+x M	
	0.100 - x	0 + x	0 + x]

2. K_{a1} for H_2S is 5.7 x 10⁻⁸. Calculate [H⁺] produced from H_2S .

[H⁺] = 7.55e-5 M 67% matherma: 17%

 $K_{a1} = [H^+][HS^-]/[H_2S]$

5.7 x 10⁻⁸ = (x)(x)/(0.100 - x) assume x <<<<0.100 M

5.7 x $10^{-8} = (x)(x)/(0.100)$

$x^2 = 5.7 \times 10^{-8} * (0.100) = 5.7 \times 10^{-9} M$

- $x = 7.5 \times 10^{-5} M = [H^+]$
- 3. What is the [HS⁻] (at equilibrium) in the solution?
- $[HS^{-}] = 7.55e-5 M$ (67%)

 $[HS^{-}] = 7.5 \times 10^{-5} M$

4. Complete the table below for the second dissociation HS⁻.

Reaction	HS- ⇐	H+	+ S ²⁻	
Initial	7.55e-5 M	7.55e-5 M	0 M	\bigcirc
	7.5 x 10 ⁻⁵ M	7.5 x 10 ⁻⁵ M	0 M	
Change	-x M	+x M	+x M	33%
	- X	+ x	+ x	
		7.55e-5 +		
Equilibrium	7.55e-5 - x M	x M	0+x M	
	7.5 x 10 ⁻⁵ - x		0 + x	
		+ x		

5. K_{a2} for H_2S is 1.3 x 10⁻¹³. Calculate [H⁺] produced from Question 4.

$$1.3 \ge 10^{-13} = (7.5 \ge 10^{-5})(x)/(7.5 \ge 10^{-5})$$

 $1.3 \times 10^{-13} = x$

 $x = 1.3 \times 10^{-13} M = [H^+]$

6. What is the [H⁺] in a 0.100 M H₂S solution?

32% $[H^+] = 7.55e-5 M$

 $[H^+] = [H^+]_{1st \text{ dissociation}} + [H^+]_{2nd \text{ dissociation}} = 7.5 \times 10^{-5} \text{ M} + 1.3 \times 10^{-13} \text{ M}$

 $[H^+] = 7.5 \times 10^{-5} M$

7. Is there anything about the questions that you feel you do not understand? List your concerns/questions.

nothing

8. If there is one question you would like to have answered in lecture, what would that question be?

nothing

1. does I Jeg in the 1st table move to the initial EJ? 2. What is Ka, È Ka, 3. What makes Blas a dipoptic acid? Bidn't I already calculate the CH'] in the 1st ICE table?